
Production II Project

Technical Specifications

(Jak Tiano, Ian Sartwell, Ryan Leslie, Shain Strother, Evan Schipellite, Tim House)

Prepared by: Evan Schipellite

Introduction / Platform Specifications

 The entire duration for this project, including conceptual creation, will span

approximately twelve iteration cycles. The purpose of this document is not specifically intended

to detail the iteration tasks, as that particular content will be included within a Milestone Guide

Document. Instead, this document is meant to reflect the overall platform specifications that will

be established during the final phases of the project, as well as detail the design patterns and

structures that will be conducted when creating the features for the game. In this sense, this

document should primarily be reviewed by the Programming team, as well as any inquiring

members, in order to further understand the methods and procedures that will be utilized to

tackle and resolve the creation of the game’s core mechanics.

 The game project will be developed using the Unity Game Engine, and the InControl

Input System, provided by Patrick Hogan, will be included as an external library to resolve

conflicts relating to Unity’s process of reading and writing controller information. Otherwise, the

game’s code structure will be entirely built in C# using Unity to establish the view for the

gameplay. The eventual release of the game is intended initially for sale on PC, and Marketing

will be responsible for contacting and communicating with potential retailers. In that sense, the

game will primarily be built and available as a downloadable game type, therefore stress tests

will be conducted to ensure that the content size of the game is kept to a minimum and the actual

gameplay is able to run effectively on both Mac / PC. Gameplay should also be playable on a

variety of computer specifications, within reason.

 The nature of the requirement for controllers, however, would potentially limit the player

audience due to the lack of reliability that consumers may have all controllers available for

gameplay. In that light, while the initial platform and release will be primarily directed toward

the PC market, the game will also be developed and released on console markets, primarily the

Xbox Live Arcade and the Ouya Market. Knowledge of the code structures and game

requirements for both markets is crucial to eventually taking the project as is and redefining its

directions to meet documented expectations for both markets. Due to the code’s intended and

flexible structure, the addition of various aspects such as Leaderboards, should be easily

implemented in order to meet publishing requirements. Therefore, while PC is the initial

platform developed on, further development of the Vertical Slice would lead to collaboration

with Marketing to effectively port and adjust the project to meet requirements for various

console markets.

Project Specifications

 The game is intended to be a local multiplayer combat game for two to four players.

Furthermore, the game requires players to utilize controllers and share a single screen for the

duration of gameplay. With this in mind, the next aspect of this document serves to review

several of the features required for the game in order to detail the actual specifications for

development. Risk analysis is conducted in a separate Technical Risk Assessment Document,

and should be reviewed at a later time by the Programming team to evaluate the complexity

behind each particular feature or groups of features. It is also important to note that, due to the

iteration nature of the project, all features listed and discussed are subject to design changes, and

therefore the document should reflect the current status and understood direction of the entirety

of the project cycle. For simplicity purposes, the following features will be broken down into

general groups and further detailed in order to better relate to the Technical Risk Assessment

Document.

Local Multiplayer

 The game will only need to be playable with a minimum of two players, and a maximum

of four. This removes the possibility of allowing a gameplay experience in a single player

setting. Still, due to the nature of local multiplayer, various features will need to be incorporated

and tested over the duration of this project. These mainly relate to controller functionality, as

well as connections and disconnections.

Controller Layout

 Left-Axis

o Controls player movement

o Movement is absolute

 If possible, players will move in the direction requested

 A range of around the possible directions will filter input

 IE: A directional request will also take into account angles +/- X

around the possible directions.

 Right-Axis

o Controls arm direction

o Direction is absolute

 Arms will instantly snap to desired direction

o Orientation flipping should not alter current arm direction

 Start Button

o Pauses the Game

o Potentially brings up menu for game options

 This may be restricted to the host (Player 1)

 Left Trigger

o Activates Leg ability

 Left Back Trigger

o Activate player jump

o Also activates toggle gravity

 The mechanic will be detailed later

 When aerial, player can press in order to attempt gravity swap

 Right Trigger

o Activate Torso ability

 Right Back Trigger

o Activates Arm ability

Standardized Input

Due to the reality of varying controller types and formats, it is important that the game is

able to run effectively utilizing a number of primary controller types. Xbox and PS3

controllers should all function with gameplay. Therefore, the implementation of an external

library providing Standardized Inputs should be researched further. This procedure will

enable the game to detect connected devices, select Device Profiles, and consistently monitor

device status during gameplay. While the majority of the functionality will be handled by the

InputManager, it is still important that the Programming team understands the specifications

regarding the accessibility and use of the Input Manager.

The InControl system will provide the game with accessibility to an Input Manager that

can provide information relating to devices at runtime. This will allow the access and

detection of connections and disconnections during gameplay. Therefore, during menu

screens and combat, the game will be able to adapt to changes regarding controller status.

Upon connection, the game should seek to relate the next incremental player without a

device. Upon disconnection, the game should seek to remove the corresponding player’s

device and prepare them for a reconnection if applicable. During the selection process, this

detection of controllers will be used to specify the current players entering the game. During

gameplay, this will be only used to keep track of player inputs and properly reconnect

controllers upon loss. Therefore, in-game disconnected players will simply remain idle, while

during the selection screen disconnection will server to remove disconnected players.

It should further be noted that the InControl system simplifies button and axis detection.

Due to the nature of detecting absolute movement for both the player movement and arm

direction, the InControl system not only provides that ability to detect button presses, but it

also features a method to acquire vector information from an entire access. This information

can be utilized to map the vector information to the world space in order to compare the

requested direction with the possible direction and rotation the player mechanics can take.

This should simplify some of the vector math discussed later on in this documentation.

Menu System

 While simplified, the menu system should provide an accessible manner for players to

begin, exit, and start games utilizing the first player’s controller to select game options and start

methods to begin new rounds. Once in the selection screen, other controllers will be able to

connect to the current game in order to begin selecting robot parts, enabling a ready status when

they are prepared for gameplay. Therefore, the following section serves to briefly define the

various menu requirements for the project, along with the details relating to each specific feature.

 Main Menu

o Conveys the Start, Exit, and Options menu

o Possible art directions may call for parallax backgrounds or gameplay activity in

background, however this is not currently required for the menu procedures

o Player 1 should be able to navigate vertically through menu with Left-Axis

o X (Primary button) should enable selection of an options element

o Exit game shut down the current session

 Options Menu

o Similar navigation style to the Main Menu

o O (Back button) allows for retreat to previous menu

o Offers sound volumes

 Effects

 Music

o Offers credit information

 Brief list of developers on project

 Start Game

o Leads to Inventory Selection

 Inventory Selection Menu

o Broken up into four windows

o Each window represents a player

o Upon connection and Primary Button, players can connect to the game

o Upon disconnection or Back Button, players can be removed from the game

o Left-Axis-Y navigates through a vertical menu representing the robot structure

 Torso

 Arms

 Legs

o Left-Axis-X navigates through a horizontal menu representing part types

o An individual vertical column may allow the selection of a player’s color

 These will likely be defined colors

 Upon selection, the color becomes unobtainable by other players

o By pressing the Right Trigger, players can ready for gameplay

o When all players are ready, the game begins after a brief delay

o If all players remove themselves, the game returns to the Main Menu

 Game Over Menu

o At the end of the game, a winner is displayed

o Game technical information may be conveyed below each player box

 Player structure

 Shows selected Torso, Legs, Arms

 Player Passive Aspects

 Health

 Movement

 Jump

 Damage Done

 Players Finished

o Player 1 can then navigate with the Left-Axis-Y to select an option

 Restart Game

 Return to Inventory Selection

 Return to Main Menu

o Primary Button selections option

 Holds until all player’s ready-up

 Right Trigger selects ready for non-Player 1

 Cannot be undone

 Pause Menu

o All players can pause

 Start Button toggles pause

o Player 1 has option Game Over Menu options

 Restart Game

 Return to Inventory Selection

 Return to Main Menu

Player Architecture and Mechanic Creation

 Representing the core aspect of the game, the player architecture should be created using

polymorphic aspects to represent the player parts. Ideally, a player base class will be created to

handle all similar features including health, movement, jump power, and player robot creation. It

may be worth splitting the base into a movement class and part class to link similar features. The

Movement class will handle the actual force understanding for player movement, jumping, and

adherence to forces. The Base class will handle the creation of the robot, the value checks, and

the monitoring of player actions. Each part will be derived from a default part. Torso, Legs,

Arms, and Projectiles will all be derived from base classes that unite similar traits that are

apparent in all similar part types. Due to the nature of C#, this aspect should not be difficult to

implement and will allow for the extensibility of part features, actions, and types, as well as

allow parts to dictate health, movement, and jump increases or decreases that can be relayed to

the Base class.

Player Movement

 Handles player movement, gravity forces, and jump.

 Movement

o Determines the speed in which the player moves around planets when on the

ground

o On Ground Checks

 Ray casts downwards from a ‘bottom’ point

 Bottom point manually placed within Leg prefab

 Detects non-projectile object below within distance

 TransformDirection Allows for down vector to be oriented with

player status

o Ground movement

 The player will be translated / rotated around planets when on the ground

 Absolute Movement

 Compare input vector / required vector

o Allow for angle +/-

 If correct, move player left / right

o Translate / rotate around the planet

o Air movement

 Add forces to player to limit air movement

 Player can still move left and right

 Forces are applied in direction

 Max force before landing

 IE: Players can only adjust their air movement a specific amount

when in the air

o This limits players fighting against other forces while still

letting them move around if no other forces are exerted

o Jump

 On button press, the player can apply a large amount of force upward

 While not on the ground, this action can be executed

 A short delay is implemented to prevent the user from applying the

force multiple times due to the nature of raycasting

o IE: The speed of frames would detect 4-6 jump presses,

thus applying the force 4-6 times before the user actual

jumped high enough to leave the ray cast range

 Jumping again while attempt an orbit toggle

 Player will queue the GravityObject class

o This class will attempt an orbit swap if applicable

 Gravity influence

o Each update, the player will also queue the GravityObject class for a gravity

source

 This will apply a subtle force toward the active gravity source

 This allows the players to be attracted to planets and other gravity objects

Player Base

 Handles player health, and part models / scripts

 Player Values

o After initializing player parts

 Evaluate the total player health

 Add together part health

 Evaluate the total player movement speed

 Take base movement

 Add part movement

o These may be either positive / negative

 Game will check for below 0

o This should never happen

o Will set to 1 regardless

 Send player movement speed to Movement class

 Evaluate Player Name

 Evaluate Player Color

 Create Player Robot

o 3 Different types of enums: Torso, Legs, Arms

 Previous gameplay will set enum types for each player

o Reflection Pattern allows for the enums to create models / scripts

 IE: Mech_Legs_Spider enum creates the corresponding model and script

o Initialization creates Torso, Arm, and Legs before initializing player values

o Each part starts as default, if a non-default enum is detected

 Remove the default model

 Add the corresponding part model

 LoadResources(PATH + ENUM)

 Add the corresponding script

 mechArmScript = GetComponent<ENUM>()

 Player Mech Base will update and monitor device connections / disconnections

 Arm Direction

o Evaluates vector input of Right-Axis to orientate player arms

 Transforms vector to world space

 Actions

o Runs the actions on the scripts for Torso, Arms, and Legs

o Each script will check for actual button presses

Mechanic Features

The following section serves to outline the details following each part type. Essentially, the

Base class will call the actual actions for each part script. These scripts will update accordingly

and further detect for button presses in their own ways. Each part will derive itself from the

Torso, Legs, or Arms class. All classes will share similar features relating to their methods for

cooldown components, health, movement adjustments, etc. All of these variables will be held by

the parent class, and the child classes will implement additional required variables that may

depict aspects such as damage, resources to load, and specified cooldown times. These variables

will be readily available and named properly for further testing and adjustments by the Design

team.

 Legs

o Tank Treads

 Collision with Tank Treads deals passive damage over time to enemies

 Active button rotates Tank Treads 360 degrees, stretching them outward and

damaging enemies caught within range

 This may also temporarily disable nearby enemies, allowing the player to

pursue or flee the area

 This effect can likely be generated through simple collision checks and

scaling of the view model

o Jetpack

 The Jetpack should allow the player to hover while aerial

 Applied forces upwards

 The player will reduce their downward fall

 The player can move around within the air for a short time

 The player can damage enemies below their Jetpack

 Creation of invisible collision objects that last a short time below the

player

o Spider

 Allows player to dive toward the ground

 Impact with object or ground triggers explosion

 Invisible collision object that lasts a short duration

 Players are damaged on impact

 Players are damaged on explosion

 Players maintain constant force while used

 Torso

o Body Slam

 Allows player to dash forward

 Applies force to player

 Creates collision object around player

o Damages enemies hit

o Applies force to enemies on hit

 Determine direction between collision object and

enemy hit to acquire force direction

o Laser Beam

 Activates laser bombardment that spans in front of player

 Fires multiple laser shots

 Trigger colliders

 Can pass through enemies

 Still destroyed on non-player / non-projectile collision

 Shots deal damage depending on range

 Close range deals more

o Energy Shield

 Allows player to damage and knock-back other players

 Creates visual sphere that sends enemies flying away

o Decreased damage / force depending on distance from center

of shield

 Lasts a short duration

 Reflects enemy projectiles

o Re-orients the current force on the projectile

 Arms

o Sword

 Player can swing sword to damage players in front

 Sword is treated as a trigger object

 Upon collision, knock-backs collision object and damages

 Sword undergoes rotation process

 On activate, sword rotates for a set amount

 At end of swing, sword rotates backwards to beginning

 On collision, sword rotates backwards to beginning

o Fists of Fury

 Each button press causes player to punch in arm direction

 Extends arm length for punch

 Damages enemies hit

 Damaged enemies remembered by fists

o Each hit refreshes remember duration

o After remember duration reaches 0

 Removes enemy from known list

o Each hit checks for remembered enemies

 Additional damage applied

 Depends on times hit before

 Possible subtle knock-back on hit

o Used to interrupt enemies

o Machine Gun

 Allows player to quickly use burst-fire from a distance

 Over duration fires a certain number of shots

o Shots vary slightly in horizontal velocity

 Causes shot spread

 Minor damage on hit, many shots fired

 Somewhat influenced by gravity forces

o Rocket Launcher

 Allows player to fire individual rockets

 Rockets extend with an initial velocity

 Gravity causes rockets to fall back toward planet

 Homing encourages rockets to move toward enemies

o Doesn’t follow owner

 Explosion on object hit

 Damages enemies

 Reduced damage to owner

o Riot Shield

 Allows player to ‘punch’ in the arm direction

 Shield moves forward

 Damages players hit

 Knocks players back

 On active, reflects projectiles and prevents weapon hits

 Reflected projectiles are converted to Riot Shield player

 Weapon hits (Melee) may do reduced damage

o Grapple Whip

 Launches a grapple whip to pull enemies closer

 Arm animates and extends outwards

 Players hit are disabled

 Arm pulls players hit back to the Grapple Whip player

 Damages players hit

 Projectiles

o All projectile will derive from a base Projectile class

o Projectile will share initial force, damage, and impact force to apply

o Projectile will also be able to toggle a homing feature to follow players

 This feature can have variable detection distance and % adjustment

o Projectile also have a Strength value and Strength damage

 Determines the projectile health and damage it deals to other projectiles

 This allows projectiles to destroy other projectiles

 IE:

o Rocket has 10 health, 1 strength

o Pellet has 1 health, 1 strength

 Rocket requires multiple pellets to be destroyed, but

can easily destroy other weaker projectiles before then

Physics System

 The Physics system is best understood as being divided into two basic areas. There are

Gravity Sources and Gravity Objects. Gravity Sources serve as objects that attempt to attract

Gravity Objects to their centers. Gravity Sources don’t actually seek to apply their force, but

rather are available for Gravity Objects to check for and queue for forces. In this sense, Players

and Projectiles can check for collisions with Gravity Source colliders (Orbits) and queue the

source for its force.

Gravity Sources

As noted beforehand, objects with a Gravity Source scripts will simply maintain their

position and be prepared to supply it to inquiring Gravity Objects.

Gravity Objects

Gravity Objects will begin with an empty list of Gravity Sources. Upon Trigger Enter /

Exit, the Gravity Object will remove to add or remove the Gravity Source as applicable. The

first Gravity Source in the list will be utilized for gravity applications. Therefore, the first

Gravity Source located will remain as the primary gravity application. However, if a Gravity

Object, such as the player, calls the swap function, the Gravity Object will attempt to alter

the primary Gravity Source.

In this case, the Gravity Object will do one of three things. If there is one or less Gravity

Sources, nothing will occur. If two Gravity Sources exist in the known list, the Gravity

Object will swap their locations, thus changing the primary Gravity Source. If more than two

Gravity Sources exist, the Gravity Object will attempt to evaluate the nearest secondary

Gravity Source and then swap the two. This will allow objects, such as Players, to remain

attracted to specific planets, thus enabling them to jump without concern for leaving their

current planet. Player control will also allow them to choose when to toggle to switch to a

new orbit within range. Furthermore, if the Gravity Object Exits all triggers, it will maintain

a separate variable to determine the last know Gravity Source in order to continue a gravity

application.

UI Elements

 While largely depicted on the Design and Art task list, the functionality of the UI

elements and external aspect of gameplay will initially stem from functionality creation by the

Programming team. Simple elements such as Camera functions, Health display, and Cooldown

display represent the core UI elements that the programmers will need to create before other

teams begin testing and implementing potential designs.

 Camera

o Camera should lerp between spots

 Doesn’t instantly snap for viewing

o Camera should attempt to follow all viewable players

 Add or removes players dynamically

 Player death removes

 Player creation adds

 Takes average of player locations to determine position and zoom

o Camera clamp

 Detects objects (Players) that go beyond a certain clamp range

 Camera views the object position beyond this range at a max

 IE: Player that goes past a distance of 10 will be understood as

being at 10

 Visual elements can be placed at these max ranges to point to the

direction the player is actually at

o Offers various values

 Min Zoom

 Max Zoom

 Camera Lerp Speed

 Camera Height

 Health Display

o Displays a health bar above the player

 Orientates with player

 Conveys the percentage health remaining

 Cooldown Display

o May undergo several redesigns

o Conveys the cooldown time for Torso, Legs, and Arms

o Each corner of the screen shows the robot structure in the player color

 Slightly transparent

 Components turn red of use, clear up as they become available

 Light up on available

 Potentially show on viewer model when ready

Stretch Goals

 The following seeks to simply detail some of the technical requirements behind available

stretch goals for the current project cycle. The Technical Risk Assessment document will further

elaborate on the reasons behind the scoping of these features, but this section intends on mainly

noting the actual required technical specifications for each feature, thus providing the Technical

Risk Assessment with basis for evaluation.

 First Phase Gameplay

o Allows players to compete for parts

 This would limit their selection in the combat gameplay

 Designed to allow players to experience new part mixtures

 Places a combination of strategy of part collection and combination

o Players use the Left-Axis only for this gameplay

o Players move around in a 2D space, chasing after parts that spawn

o Planets are represented by 2D cut-outs

 Originally voxel drilling was intended, but this is the simplified version

o Players move through planets

o Parts spawn over the duration time limit

 Spawn in multiple groups

 Calculations can dictate the relative balance of part types

o A single balanced competition level can be created by Designers

o Colliding with another player may simply knock-both players in different

directions

 Collisions from the back or sides may disable that player for a moment

o At the end of the round, players move to the Inventory Selection Menu

 Player Eject on Death

o Upon loss of health, players leave their Robot as a small person

o Similar control scheme

 Jump

 Torso

 Roll

 Arms

 Punch or Pistol

 Legs

 Kick

o Minimum damage

o Player has small amount of health

o Player can attempt to survive and pick-off other players still fighting

 Player Profiles

o Players can create new profiles from the Main Menu

 Defines

 Player Name

 Color

 Statistics

o Wins / Losses

o Highest Damage in a round

o Profiles can be selected from a list in the Inventory Selection Menu

