
Evan Schipellite and Jak Tiano 

Time-Tanks Technical Design Document 

Prepared by: Evan Schipellite 

Required Components 

 An alternative graphics library linked correctly to the project base 

o This will likely be SDL 1.2. 

o Project components relating to Allegro should be swapped with SDL features. 

o The project itself should run fairly well with the changes and should feature SDL aspects to 

manage the buffers, drawing, rotating, text, primitives, and events. 

 A partial Player class 

o A player class containing information such as the player’s location and rotation should be 

created. 

o This class may have further developed features, but the majority of the player-related aspects 

may be maintained by a type of HUD class that keeps track of level data relating to the player’s 

score, attempted tries left, and other aspects. 

o Therefore, the player class should primarily be concerned with managing the drawing of the 

player object, player turret, and possibly collision checks through events. 

o Upon player death / end time, the player’s timestamps should be sent to the ghost manager to 

create a player-based ghost object. 

o This class should also keep track of when the player has fired and when the player can fire again. 

This will allow for a delay to prevent the player from rapidly firing. By firing, an event should be 

dispatched to launch a projectile at a given location. 

o This class should also keep track of the Player’s health in the game, which may decrease from 

enemy projectile collisions, as well as a timer. 

o The Player class will save information relating to the player’s actions, and then utilize an event to 

send out the information upon death / end of time. 

 Enemy Manager 

o An enemy manager should allow for a certain number of enemies to be spawned at specified 

locations. The game should keep track of these enemies placed in the world, and upon being 

destroyed in the game, they should be removed from the manager. 

 Upon being destroyed, an event should be created to coordinate with the Ghost Enemy 

Manager in order to monitor which enemies should become part of the replay feature. 

 Enemy Class 

o The enemy class should keep track of the enemy’s location, rotation, and current state. Upon 

being destroyed in the game, the level manager should allow for the enemy to be deleted, and 

an event should be dispatched to create an enemy ghost based on time stamps. 

o It is likely that the enemy’s update / movement procedure will also contain simple AI aspects in 

order to detect a nearby player and then begin moving / targeting the player. Upon going out of 

range the enemy should proceed to move to the player’s last known location. 

o If no player is present, the enemy should move randomly in an idle motion around a small area, 

simply detecting collisions with walls and moving small amounts in random directions. 



o The Ghost class will likely save information based on its own actions, sending the information out 

upon being destroyed. 

 Ghost Manager 

o It may be the case that the Manager may be divided into two separate systems where the enemy 

and player ghosts are kept track in separate manners. However, ideally it would make the most 

sense for the recording process to be determined in such a similar manner that the Ghost 

Manager will simply take in the time stamps, object, locations, and rotations in order to recreate 

the scenario. 

o Therefore, the Ghost Manager will be able to listen for events to create the entities based on 

time stamps, objects, locations, and rotations. The Ghost Manager will then create either a Ghost 

enemy or Ghost player and then save the information in the Ghost Manager. Whenever the 

game begins again, meaning the player had died / run out of time, the Ghost will be added to the 

visuals and then will act out following its information to imitate its previous actions in the game. 

o If a ghost reaches the end of its information sets, meaning the player had survived longer than 

the Ghost was around for, the Ghost should simply vanish. 

 Ghost Class 

o The Ghost class will contain the information regarding the time stamps, the locations, the 

rotations, and the Ghost visual. It will be primarily managed by the Ghost Manager in terms of 

how it is run through, but all of the information will be stored in the Ghost itself. 

 Input Manager 

o The Input Manager should simply listen for basic key buttons such as ‘ESCAPE’ in order to quit 

the game, as well as ‘SPACE’ and other keys to navigate through the menus. Gameplay will likely 

be completed through keyboard features. It is likely that the player will rotate the turret utilizing 

the A and D Keys, Fire using the SPACE Key, and move with the Arrow Keys. 

 Projectile Manager 

o A Projectile Manager should simply update and monitor all of the projectiles in the game world. 

Upon being created by an event, a Projectile will be added to the Manager and will be deleted 

upon a located collision. 

o Depending on the type of collision, an event to reduce the health of an Enemy or Player will be 

sent out. Regardless, the Projectile should be destroyed. 

 Projectile Class 

o The Projectile Class will keep track of the velocity, location, angle, and visual of the Projectile 

being fired. It should also note the association (Player or Enemy) in order to monitor which 

objects it can successfully collide with over the course of the game. 

 Level Manager 

o The Level Manager should simply monitor the amount of Levels in the game. 

 Level Class 

o The Level Class should concern itself with the world visual, bounding boxes, level difficult, player 

data, and tank data. 

o It is likely that all information required for the HUD and Player might be based in the Level to 

obtain from a Level Data system at the start of the game when all of the levels are created. 

o Therefore, information will be passed to the HUD and Player when the Level becomes active in 

the Level Manager. 

o It may be possible for each level to own its own start / end screen that will introduce the player 

with win / loss screens over the course of gameplay. 



 Menu Manager 

o The Menu Manager will contain all of the information relating to the start screen, language 

screen, and option menu. 

o Depending on the given menu presented, the Menu Manager should allow the game to listen for 

certain prompts and then send out events accordingly in order to adjust the game’s features. 

o Adjusting the difficulty, language, or sound, the game should send out events to adjust these 

features. 

o Localization can likely be done through text files that are loaded depending on the language 

choice made in the options. 

 Saved Game Class 

o This class will likely hold the information relating to the current gameplay upon exiting the game. 

Upon starting the game, one of the options on the start screen will likely allow the user to 

initiated this class to load the saved information and continue the game. 

 Event Information 

o A number of undetermined events will likely be created in order to pass information concerning 

the adjustment of player health, gameplay features, and enemy health. 

o The most notable event component will likely relate to the creation of an event that will assist in 

determining the Ghost information. It is likely that an event containing time stamps, locations, 

rotations, and a visual type could be utilize for the replay feature of the game. 

o This Replay Feature will likely be the source of the external research component of the project. 

 Sound Manager 

o This system will store and manage all of the sound components in the game. Upon being 

requested by an event, the Sound Manager will play a certain sound or stop sounds depending 

on the game state. 

 Sound Class 

o The sound class will contain information relating to the current sound clip to play, playing the 

information at the request of the Sound Manager. 

 HUD Class 

o The HUD class will store and present the various pieces of information relating to the gameplay. 

o The Player health, tries left, level, and potential score may be displayed on the HUD. 

o The HUD also may present the FPS of the game in the area. 

 Bounding Box 

o This class should create a simply invisible bounding area to represent a wall. Basically this will 

allow for the objects to have bounding boxes, including the Player, Enemy, Projectile, and Walls. 

 Wall Manager 

o A Wall Manager should simply keep track of the collision walls in a given level. Upon interaction 

with any object, it should prevent movement through it. 

 Wall Class 

o The Wall class should essentially just contain a bounding box, as well as the ability to be 

detectable as a wall during collisions. 

 

 

Risk Assessments 



 High: Evidently, creating the replay feature may prove to be the most difficult task of this project, largely 

because it is an unknown component that has not been done before by the programmers. Therefore, it’s 

actual creation may diverge from the original assumptions due to the more efficient methods that may 

be observed through research. 

 Medium: Creating the Sound Manager and Sound System will take some time because it is also an 

unknown feature. It may not be incredibly difficult, but locating proper sound files and adding them to 

the game in an appropriate fashion may take some planning. 

 Medium: Detecting Collisions utilizing the bounding boxes may take some time to format in a universal 

manner, but this is simply due to the fact that there is no current collision method available in the 

project base. 

 Low: Localization may take time to properly set up, but it is likely that it will simply be a matter of 

formatting a few text files in order to read them in depending on the given language selected. 

 Medium: The saved game class may take some time to properly create. Although saving information is 

simple enough, saving the information required to effectively imitate the game state may require some 

extensive testing. 

 Medium: Evidently, working with SDL may prove troublesome, not only in terms of linking, but also in 

terms of future development. Running multiple graphics could potentially cause later problems, although 

those issues may simply need to be prioritized upon appearance. 

 Medium: Creating Ghosts may require some time to set up the system, simply due to the fact that saving 

all of the required information may not be as simply as originally intended. It may require more research 

and knowledge of generating and relating time-stamps to properly set-up all of the Ghost movements. 

 


